Algebraic number

In mathematics, an algebraic number is a number that is a root of a non-zero polynomial in one variable with rational (or equivalently, integer) coefficients. Numbers such as \pi that are not algebraic are said to be transcendental; almost all real numbers are transcendental.

Contents

Examples

  • The numbers \scriptstyle\sqrt{2} and \scriptstyle\sqrt[3]{3}/2 are algebraic since they are the roots of polynomials x^2 - 2 and 8x^3 - 3, respectively.
  • The golden ratio \phi is algebraic since it is a root of the polynomial x^2 - x - 1.
  • The numbers \pi and e are not algebraic numbers (see the Lindemann–Weierstrass theorem);[2] hence they are transcendental.

Properties

Algebraic numbers coloured by degree.

The field of algebraic numbers

The sum, difference, product and quotient of two algebraic numbers is again algebraic (this fact can be demonstrated using the resultant), and the algebraic numbers therefore form a field, sometimes denoted by A (which may also denote the adele ring) or Q. Every root of a polynomial equation whose coefficients are algebraic numbers is again algebraic. This can be rephrased by saying that the field of algebraic numbers is algebraically closed. In fact, it is the smallest algebraically closed field containing the rationals, and is therefore called the algebraic closure of the rationals.

Related fields

Numbers defined by radicals

All numbers which can be obtained from the integers using a finite number of additions, subtractions, multiplications, divisions, and taking nth roots (where n is a positive integer) are algebraic. The converse, however, is not true: there are algebraic numbers which cannot be obtained in this manner. All of these numbers are solutions to polynomials of degree ≥ 5. This is a result of Galois theory (see Quintic equations and the Abel–Ruffini theorem). An example of such a number is the unique real root of polynomial x5x − 1 (which is approximately 1.167304).

Closed-form number

Algebraic numbers are all numbers that can be defined explicitly or implicitly in terms of polynomials, starting from the rational numbers. One may generalize this to "closed-form numbers", which may be defined in various ways. Most broadly, any number that can be defined explicitly or implicitly in terms of polynomials, exponentials, and logarithms – these are called "elementary numbers", and include the algebraic numbers, plus some transcendental numbers. Most narrowly, one may consider numbers explicitly defined in terms of polynomials, exponentials, and logarithms – this does not include algebraic numbers, but does include some simple transcendental numbers such as e or log(2).

Algebraic integers

Algebraic numbers coloured by leading coefficient (red signifies 1 for an algebraic integer).

An algebraic integer is an algebraic number which is a root of a polynomial with integer coefficients with leading coefficient 1 (a monic polynomial). Examples of algebraic integers are 5 + 13√2, 2 − 6i, and ½(1 + i√3). (Note, therefore, that the algebraic integers constitute a proper superset of the integers, as the latter are the roots of monic polynomials xk for all kZ.)

The sum, difference and product of algebraic integers are again algebraic integers, which means that the algebraic integers form a ring. The name algebraic integer comes from the fact that the only rational numbers which are algebraic integers are the integers, and because the algebraic integers in any number field are in many ways analogous to the integers. If K is a number field, its ring of integers is the subring of algebraic integers in K, and is frequently denoted as OK. These are the prototypical examples of Dedekind domains.

Special classes of algebraic number

Notes

  1. Some of the following examples come from Hardy and Wright 1972:159-160 and pp. 178-179
  2. Also Liouville's theorem can be used to "produce as many examples of transcendentals numbers as we please," cf Hardy and Wright p. 161ff
  3. Hardy and Wright 1972:160

References